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Using a linear stability analysis of a system of n equal-mass bodies in circular orbit 

about a large primary mass, the compositional dynamics of Saturn’s ring system is 
determined. Using a linear stability matrix and determining the associated eigenvalues, 
the inequality dictating the relationship between the cumulative mass of the n bodies and 
the mass of Saturn is derived. The results regain Maxwell’s crucial theoretical 
conclusions on the stability of Saturn’s rings, proving that a system of n non-interacting 
bodies in planar circular orbit exhibits stability, even against in-plane perturbations. 
Centrally, the derived mass ratio inequality relationship sufficiently predicts the many-
body nature of Saturn’s rings and aligns with spectroscopic and experimental data. 

 
I. INTRODUCTION 

While ring systems are generally highly 
collisional and unstable due to energy 
dissipation, Saturn’s rings, closely representing 
an annular disk with concentric local maxima 
and minima, remain in stable orbit around the 
planet. The composition of Saturn’s ring system 
remained a theoretical mystery until Maxwell’s 
mathematical analysis of ring stability for the 
University of Cambridge Adam Prize in 1856, 
which determined that the rings are composed 
of isolated masses of varying size. As Maxwell 
states in his argument, “the only system of rings 
which can exist is one composed of an infinite 
number of unconnected particles revolving 
round the planet with different velocities 
according to their respective distances” [1]. That 
is to say, Maxwell eliminated the possibility of 
Saturn’s ring structure as being either a rigid 
disk or a fluid system of gaseous particles [1].  

Most importantly, a ring of equal-mass 
particles in circular orbit about a mass much 
larger than that of the particles remains in stable 
motion even when affected by small 
perturbation disturbances [2]. 

In this analysis, Saturn’s ring system will be 
treated as a planar n-body problem and only in-
plane perturbations will be considered and out-

of-plane perturbations will be considered 
negligible. First, a block circulant matrix 
describing the linear approximation of the 
system dynamics and in-plane perturbations is 
constructed. Leveraging the determinant of the 
matrix, the eigenvalues are calculated. From the 
eigenvalues, an inequality is derived relating the 
mass of the primary, Saturn, to the cumulative 
mass of the n bodies in circular orbit about 
Saturn. The inequality is assessed in the limit of 
large n where the mass of each satellite body is 
vanishingly small in comparison with the mass 
of Saturn. From this limit, Maxwell’s 1856 
conclusion regarding the ratio of the ring mass 
to Saturn’s mass is regained, defining the mass 
ratio conditions under which Saturn’s ring 
system is stable.  

 
II. THEORETICAL BACKGROUND 
A linear stability analysis of a system of n 

equal-mass bodies in circular orbit about a very 
large mass provides insight into the mechanics 
of Saturn’s ring system. In this mathematical 
analysis, Saturn’s ring system will be treated as 
a planar n-body problem and only in-plane 
perturbations will be considered. As Maxwell 
concluded in his 1856 analysis, out-of-plane 
perturbations are less destabilizing than in-plane 
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perturbations and, therefore, the out-of-plane 
perturbations have only negligible effects which 
can be ignored for simplicity [3]. Ultimately, 
this allows for the derivation to be performed in 
complex notation, clarifying the mathematical 
methods.  

Notably, the system of Saturn’s rings 
parallels n-body satellite systems of vanishingly 
small masses in rotation about a center of mass 
point. Moeckel’s 1994 discussion of the linear 
stability of such systems, rooted in the invariant 
subspace of the linearized Hamiltonian, 
illustrates ring stability only at 𝑛 ≥ 7 [4]. 

To begin the discussion, Newton’s law of 
gravitation defines dependence of the angular 
velocity of the particles on their radius r from 
Saturn, the large primary of interest. Introducing 
a small perturbation of the system will lead to a 
circulant matrix and the eigenvalues of that 
matrix define a linear approximation of the 
perturbation. Using this, Maxwell’s results for 
cases of large n where n represents the small-
body masses will be derived. From this, the 
conclusion is reached that Saturn’s rings are 
stable so long as the following inequality is not 
violated: 

 
𝑚!"#$% ≤

!.!"#!!"#$%&
!!

                (1) 
[3].  

 
III. METHOD 

To consider n bodies in circular orbit about 
Saturn, the system must be counter-rotated so 
that all of the bodies remain at rest with the 
planet serving as the center of mass [3]. Then, 
the system is perturbed and the effect of this 
perturbation is analyzed to determine the nature 
of the ring system’s stability condition. Even 
further, each ring body is repositioned to lie on 
the x-axis so that the perturbations in the real 
part represent radial perturbations, giving the 
stability matrix a circulant nature [3]. 

Importantly, the stability matrix is a block 
circulant matrix, meaning that it is a circulant 
matrix composed of small matrices, called 
blocks. The stability matrix for Saturn’s ring 
system is composed of four blocks. Further, a 
circulant matrix is a matrix whose rows are 

cyclically shifted versions of a list such that 
each row is rotated one element to the right 
relative to the preceding row.  

For the linear stability analysis of a system 
of n equal-mass bodies in circular orbit about a 
much more massive primary, Newton’s law of 
gravitation yields a relationship between the 
angular velocity of the ring bodies and their 
radius from the center of mass. From this, the 
equation of motion for the system with respect 
to the angular velocity is determined and the 
system is perturbed in order to analyze first-
order stability [3].  

This is the starting point for this analysis’ 
derivation of the mass ratio condition for 
stability. First, a block circulant matrix is 
employed to characterize the linear 
approximation of in-plane perturbations to the 
system. An analysis of the circulant matrix,  
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described in Vanderbei and Kolemen’s Linear 
Stability of Ring Systems roots the mathematical 
investigation [3]. 

The complex matrices D, Ω, and 𝑁!, used to 
simplify the block circulant matrix 
representation, are denoted as 

 

𝐷 =   
3
2𝜔

! 1 1
1 1    

+ !"
!!!

1− 𝐼! + 𝐽!/2 3− 3𝐽!/2
3− 3𝐽!/2 1− 𝐼! + 𝐽!/2

   (3) 
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Ω = 2𝑖𝜔 −1 0
0 1          (4) 

and 
 

𝑁! =

  !"
!!!

𝑒!!!(1− 𝐽!,!/2) 3𝑒!!!! − 3𝐽!,!/2
3𝑒!!! − 3𝐽!,!/2 𝑒!!!!(1− 𝐽!,!/2)

 (5) 

 
while 𝐼!,! and 𝐽!,! can be written as 
 

𝐼!,! =
!

! !"#(! !
! )

   (6) 

 
𝐽!,! =

!

! !"#!(! !
! )

 ,  (7) 

 
drawing upon Kolemen and Vanderbei’s matrix 
notation [3]. Physically, Eq. (3), Eq. (4), and Eq. 
(5) represent the components of the equation of 
motion for the ring system, which is derived 
from Newton’s law of gravity [3]. A detailed 
explanation of this Newtonian system’s 
equation of motion derivation leading to the 
structure of Eq. (2) resides in Vanderbei and 
Kolemen’s Linear Stability of Ring Systems. 
Based upon the matrix’s structure, the necessary 
solutions are of the form 
 

𝛿𝑊!
𝛿𝑊!
⋮

𝛿𝑊!!!

=

𝜉
𝜌𝜉
⋮

𝜌!!!𝜉

  .  (8) 

 
Continuing, the nontrivial eigenvalue 

solutions of the matrix are ascertained by 
analyzing the determinant of  

 
det(𝐷 + 𝜌𝑁! +⋯+ 𝜌!!!𝑁!!! + 𝜆Ω 

  −𝜆!𝐼) = 0  (9) 
 

where the determinant is necessarily equivalent 
to zero. In rewriting, Eq. (9) can be represented 
by  

det 𝐷 + 𝜌!𝑁!

!!!

!!!

+ 𝜆Ω− 𝜆!𝐼  

= 0 .    (10) 

Using reduction, the summation term is 
rewritten as 

 
𝜌!𝐽!,! = 

1
4

𝑒
!!"#$
!

𝑠𝑖𝑛! 𝜃!
2

!!!

!!!

!!!

!!!

1
4

cos 𝑗𝜃!

𝑠𝑖𝑛! 𝜃!
2

!!!

!!!

 

                               ≡ 𝐽!,! ,   (11) 

which similarly implies the structure of the 
following summation terms: 
 

𝜌!𝑒!!!𝐽!,! = 𝐽!!!,!!!!
!!!           (12) 

 
𝜌!𝑒!!!!𝐽!,! = 𝐽!!!,!!!!

!!!  .       (13) 
 
Further manipulation of the summation term 

in conjunction with the Kronecker delta yields 
 
𝜌!𝑒!!! =!!!

!!! 𝑒!!"!𝑒!!!!!!
!!!   

= 𝑒! !!! !!!!!
!!! = 𝑛 − 1, 𝑗 = 𝑛 − 1

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       (14) 

 

𝛺 𝜌!𝑒!!!!!!!
!!! = 𝑛 − 1, 𝑗 = 1

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  .    (15) 

 
To explicitly define the summation term, Eq. 

(5) and Eq. (11)-(15) are substituted into the 
summation term, yielding  

 
𝜌!𝑁!!!!

!!! = !"
!!!

∗  
−1 + 𝑛𝛿!!!!! −

!
!
𝐽!!!,! −3 + 3𝑛𝛿!!! −

!
!
𝐽!,!

−3 + 3𝑛𝛿!!!!! −
!
!
𝐽!,! −1 + 𝑛𝛿!!! −

!
!
𝐽!!!,!

  (16) 

 
where the Kronecker delta, 𝛿!!!, is equivalent to 
1 when j = k but 0 for all other values.  

Drawing upon Vanderbei and Kolemen’s 
Linear Stability of Ring Systems,  

 
𝜔! = !"

!!
+ !"

!!
!

!"# !"
!

!!!
!!!   

= !"
!!
+ !"

!!
𝐼!         (17) 

in order to satisfy Newton’s equations of motion 
with 
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𝐼! ≡
!

!"# !"
!

!!!
!!!    (18) 

 
where   𝜔  is the angular velocity of the ring 
particles orbiting Saturn and the term 
𝐼!condenses the expression [3].    

Next, using the results of Eq. (4), Eq. (6), 
Eq. (16), Eq. (21), and Eq. (22), the matrix is 
rewritten as 
 

            𝐷 + 𝜌!𝑁!

!!!

!!!

+ 𝜆Ω− 𝜆!𝐼 = 

  
𝜂!

!
!
𝜔! + !

!
𝛼!!

!
!
𝜔! + !

!
𝛼!! 𝜂!

   (19) 

 
where 
 
𝜂! =

!
!
𝜔! + !

!
𝛼!!!! − 𝛽! − 2𝑖𝜔𝜆 − 𝜆!      (20) 

 
and 

 
𝜂! =

!
!
𝜔! + !

!
𝛼!!!! − 𝛽! + 2𝑖𝜔𝜆 − 𝜆! .    (21) 

 
Next, leveraging the analytical software, 

Mathematica, the determinant of Eq. (10) is  
 

det 𝐷 + 𝜌!𝑁!

!!!

!!!

+ 𝜆Ω− 𝜆!𝐼 = 𝜆! 

      + 𝜔! − 𝛼 !
!±!

! + 2𝛽! 𝜆! 

             +3𝜔! !
!
𝛼 !
!±!

! + !
!
𝛼!
!

! − 𝛽!  

+ !
!
𝛼!/!±!! − 𝛽!

!
− !

!
𝛼!
!

!     (22) 

 
with eigenvalue  
 
 𝜔! ≥ 4𝛼 !

!±!

! + 9𝛼!
!

! − 8𝛽! 

+ 4𝛼!/!±!! − 9𝛼!
!

! − 8𝛽!
!
− 9𝛼!

!

! . (23) 

 
Here, only the greater-than constraint physically 
relevant so the result is constrained to the 
positive root [3]. The terms 
 

𝛼!! =
!"
!!!

(𝐽! − 𝐽!,!)   (24) 
 
and 
 

𝛽! = !"
!!!

𝐼!        (25) 
 
are defined to simplify the lengthy expression 
for the determinant of Eq. (10) [3]. Finally, 
substituting the values of 𝜔! , 𝛼!! , and 𝛽!  into 
Eq. (23) and rearranging to find 𝑀/𝑚 , the 
inequality becomes  
 
𝑀
𝑚 ≥   2(𝐽! − 𝐽 !

!±!,!
)+

9
2 (𝐽! − 𝐽

!
!,!
) 

       −5𝐼! + [(2(𝐽𝑛 − 𝐽 𝑛
2±1,𝑛

) + 9
2
(𝐽𝑛 − 𝐽𝑛

2,𝑛
)  

−4𝐼!)! −
!
!
(𝐽! − 𝐽!

!,!
)!]

!
!  .  (26) 

 
In other words, the ratio of the large primary 

mass to the smaller collective mass of n finite 
particles obeys the relationship characterized by 
Eq. (26), which stems from the eigenvalues of 
Eq. (22).  

Addressing the present case of Saturn’s 
rings, in the limit of large n it is clear that 
𝐽!
!±!,!

≈ 𝐽!
!,!

 and, congruently, 𝐽! ≫ 𝐼! . 

Leveraging this approximation, 𝐽!
!,!

 can be 
restated as  

 

𝐽!
!,!
≈    !

!
!! !

!"#! !"
!

!
!
!!! ≈ !!

!!!
!! !

!!
!
!!! =

!!!!

!!!
!
!!

!
!!! = !!

!
!! !

!"#! !"
!

!
!
!!! ≈   − !

!
𝐽!.  (27) 

  
Next, inserting this value for 𝐽!

!,!
 into Eq. 

(26), the mass ratio reduces to  
 

!!"#$%&
!!"#$%

≥    !
!
(13+ 4 10)  𝐽! . (28) 
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In order to regain Maxwell’s afore noted 

inequality in Eq. (1) describing the mass ratio of 
Saturn to the n bodies, Eq. (28) is rearranged to 
give 

 

𝑚!"#$% ≤
𝑀!"#$%&

7
8 (13+ 4 10)𝐽!

 

≈ !.!"#!!"#$%&
!!

,  (29) 

 
representing the mass ratio requirement for ring 
system stability in the limit of large n.  This 
concludes the mathematical investigation into 
the stability of Saturn’s rings of n equal-mass 
particles in circular orbit about a large primary 
mass where 𝑚!"#$%&'() ≪ 𝑀!"#$%&.  

  
IV. RESULTS 

A linear stability analysis of a system of n 
equal mass bodies in circular orbit about a large 
primary provides insight into the mechanics of 
Saturn’s ring. Notably, a ring of equal-mass 
particles in circular orbit about a mass much 
larger than that of the particles remains in stable 
motion even when affected by small 
perturbation disturbances. Even further, the 
system of Saturn’s rings parallels n-body 
satellite systems of vanishingly small masses in 
rotation about a center of mass point. 

From the linear stability analysis, it is 
concluded that Saturn’s rings are stable so long 
as the following inequality of Eq. (29), 
𝑚!"#$% ≤

!.!"#!!"#$%&
!!

, is not violated. That is to 
say, a ring of n satellites in circular orbit about a 
planet is stable against perturbations of the 
relative positions if the mass of each satellite is 
vanishingly small in comparison with the total 
mass of the planet. In addition, the mathematical 
conclusion that this system of small satellites 
orbiting a planet is physically stable confirms 
that Saturn’s rings consist of n finite particles 
where 𝑛 ≫ 1 and, by inductive reasoning, does 
not consist of either a rigid planar disk or a 
gaseous cloud.  

At the core, this stability analysis reveals 
that a system of n satellites in orbit around a 

large primary represents a stable ring system. 
The system remains in stable motion even when 
affected by in-plane perturbations. With regard 
to Saturn’s specific ring stability, in the limit of 
large n, the system essentially consists of a very 
large number of finite, vanishingly small bodies 
orbiting around a much more massive primary 
body, the planet. Mathematically, the derivation 
reveals that so long as the total mass of the n 
particles obeys the inequality of Eq. (29), which 
relates the mass of the rings to the mass of the 
planet, the system is stable.  

These results parallel Maxwell’s marked 
conclusion in 1856, yielding the same 
relationship between the collective mass of the 
ring bodies and the mass of the planet about 
which the rings orbit. Attaining the mass ration 
between Saturn and its ring system 
characterized by Eq. (29), the stability of a 
planar ring of n small particles orbiting Saturn 
in the limit of 𝑛 ≫ 1 is proven. This ultimately 
regains Maxwell’s thesis, which proposes that 
Saturn’s rings exist as a system of many non-
interacting, finite bodies. 

Uncertainty associated with this derivation 
arose most notably from two primary sources. 
First, the orbits of the particles are considered to 
be circular instead of elliptical in order to clarify 
the derivation and leverage Newton’s simplistic 
gravitational laws.  In seeking to understand the 
composition of Saturn’s rings, the shape of the 
orbit does not significantly affect the 
determination that the rings are composed of 
small satellites. However, this approximation 
limits the ability of these results to accurately 
predict the nature of the satellites’ orbits and 
their response to perturbations. Centrally, 
approximating the orbit as circular introduces 
uncertainty into the rotational dynamics of the 
elliptical orbits, but this uncertainty is negligible 
in the context of assessing the physical makeup 
of the ring system.  

A second notable source of uncertainty 
results from approximating the ring system as 
planar and ignoring the ring system’s 
measureable thickness. Spacecraft probes reveal 
that gravitational perturbations caused by 
nearby masses including Saturn’s moons cause 
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the rings to have a local thickness of up to 1 km 
[5]. Approximating the ring system as planar 
allows for the mathematical exclusion of 
instabilities stemming form out-of-plane 
perturbations, which complicate the derivation 
without physical significance relevant to this 
discussion. Out-of-plane perturbations are less 
destabilizing to the system than in-plane 
perturbations and, consequently, do not have a 
noteworthy effect on the final mass ratio result 
[3]. By restricting the analysis to the planar 
case, the derivation works in the complex plane, 
simplifying the analysis without sacrificing the 
accuracy of the final result.  

Overall, the results of this mathematical 
derivation are sufficiently reliable in that they 
accurately predict the composition of the rings 
and provide a physically stable mass ratio 
describing the n small satellites orbiting Saturn. 
These results, despite the uncertainty arising 
from approximations made about the system 
dynamics, align with both theoretical and 
experimental data, suggesting that the 
approximations made do not tangibly affect the 
mathematical outcomes. 

 
V. DISCUSSION AND CONCLUSION 
The theoretical results of this derivation, 

beginning with a Newtonian analysis and 
moving towards a linear stability approximation 
suitably align with Maxwell’s 1856 theoretical 
results and spectroscopic data collected by 
James Keeler at the Allegheny Observatory in 
1895 [6]. Most notably, these theoretical results 
correctly predict the many-body nature of 
Saturn’s rings, experimentally verified by 
modern spacecraft travel. To this point, Saturn’s 
ring system is compositionally an asteroid belt 
consisting of many small, non-connected bodies 
that range in size from micrometers to meters 
which orbit around the much more massive 
primary, Saturn [7].  

In order for Saturn’s ring system to achieve 
stability, these theoretical results require that the 
small bodies rotating around Saturn be non-
gaseous, finite masses falling within the mass 
ratio of Eq. (29). In other words, the ring bodies 
must be small satellites of mass much smaller 

than the body they orbit that do not appreciably 
interact with each other. Further, the theoretical 
results demand that the number of small bodies 
rotating around Saturn be in the limit of large n, 
such where 𝑛 ≫ 1. Both spectroscopic analysis 
using Doppler shift mathematics and space 
probe photography reveal that Saturn’s rings are 
physically composed of small satellites orbiting 
the much more massive primary, Saturn [8]. In 
other words, experimental observations reveal 
that the rings are not composed of either a 
singular disk-shaped mass or of a gaseous cloud. 
Continuing, according to the Voyager space 
probes, the total mass of the rings is 
approximately 3 ∗ 10!"  kg, representing a 
fraction of only 50 ppb the mass of Saturn [9]. 

Altogether, the results of this derivation 
yield the same conclusion Maxwell arrived at in 
1856. Attaining the mass ration between Saturn 
and its ring system characterized by Eq. (29), 
the stability of a planar ring of n small particles 
orbiting Saturn in the limit of 𝑛 ≫ 1 is proven. 
This ultimately regains Maxwell’s prize-
winning thesis, which defines Saturn’s rings as a 
system of many non-interacting, finite bodies. 
Moreover, modern spacecraft probes reveal the 
physical authenticity of these theoretical results, 
experimentally proving that Saturn’s rings 
consist of many small satellites orbiting the 
planet in stable motion. Therefore, the results of 
this mathematical analysis predict the stability 
of a ring system in the limit 𝑛 ≫ 1 for finite 
masses with sufficient accuracy, aligning with 
previous mathematical derivations as well as 
experimental results of space probes.   
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